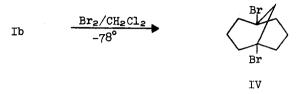

PROPELLANES V.¹ [3.3.1]PROPELLANE² Philip Warner,* Richard LaRose and Thomas Schleis³

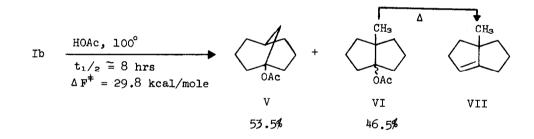
(Received in USA 25 February 1974; received in UK for publication 4 March 1974)

Our recent synthesis of [4.2.1]propellane^{1d} and interest in solvolysis of some derivatives thereof,^{1a,c} has led us to investigate the isomeric[3.3.1]propellane (Ib). Previously, some simple [3.3.1]propellane systems have been reported,⁴ but apparently no study of their "propellanic" chemistry has been made. By contrast, the dehydroadamantyl-type [3.3.1]propellanes (II) have been studied with respect to their strain properties.⁵



The synthesis of <u>Ib</u> was readily achieved via dibromocarbene (CHBr₃,KOtBu, 75%) addition to $\Delta^{1,5}$ -bicyclo[3.3.0]octene (III)⁶ to give <u>Ia</u> (mp 68 - 69°; nmr: (CDCl₃, TMS) narrow multiplet at $\delta_{2.08}$; mass spectrum: parent ions at m/e 278, 280, 282, base peak at m/e 91; acceptable elemental analysis), followed by reduction $\lceil (nBu)_3 SnH, 56\% \rceil$ to <u>Ib</u> $\lceil glc$ purified material showed ir: (CCl₄) major peaks at 3070, 3010, 2945, 2870, 1470, 1460, 2190, 1020 cm⁻¹; nmr: (CDCl₃, TMS) $\delta_{0.45}$ (singlet, 2H), $\delta_{1.65}$ (center of a multiplet, 12H); mass spectrum: calc'd. for C₉H₁₄: 122.10955; observed: 122.1096±0.002; and gave the correct elemental analysis]. As opposed to II, [3.3.1]propellane, <u>Ib</u>, was insensitive to oxygen; <u>Ib</u> was also recovered unchanged after heating at 180° for 22 hrs. Also, unlike the facile catalytic hydrogenation of II,⁵⁸

1409


Ib was recoverd unchanged after 6 hrs under 40 p.s.i. H2 (EtOH, Pd/C).

By constrast, Ib was very reactive toward Br_2/CH_2Cl_2 , absorbing the reagent immediately at -78° to give, primarily, IV [mp lll - ll2°; nmr: (CCl₄, TMS)

 $\delta 2.80$ (singlet, 2H of methylene bridge), $\delta 1.5 - 2.6$ (multiplet, 12H); mass spectrum: parent ions at m/e 280, 282, 284, (P-Br)⁺ at m/e 201, 203, base peak at m/e 121 (P-HBr₂)⁺]. This reaction appears to be free radical in nature since it is inhibited by isoamyl nitrite.⁷

Ib also shows reactivity to electrophilic addition, as exemplified by its reaction with acetic acid:⁸

V was identified by comparison to the published spectral data,⁹ while the minor component was identified only by its nmr spectrum [(CDCl₃), δ 1.10 (singlet, CH₃), δ 2.01 (singlet, OAc), δ 1.4 - 2.2 (mult.)] and further elimination (under the reaction conditions) to VII [nmr:^{10b,C} δ 1.05 (sing., CH₃), δ 5.03 (mult., vinyl H)].¹⁰ It can be seen that [3.3.1]propellane is much less reactive toward acetic acid than [4.2.1]propellane;^{1d} part of the lessened reactivity may be due to torsional interaction between a proton attacking at the C₁ position (corner¹¹) and the adjacent exo H's of Ib. The high reactivity of II relative to Ib (particularly towards oxygen) can be ascribed to at least 2 factors. First of all, the chair conformation enforced on the bicyclohexane system of II causes four eclipsing interactions of the type between C_1-C_0 and $C_2-H_{\rm eXO}$.¹² Secondly, the joining of C_0 and C_7 by a methylene group pinches back the cyclopentane rings in such a way as to increase the angle strain around the cyclopropane ring.⁵⁰ Thus II resembles, in geometry and reactivity, [3.2.1]propellane,¹³ rather than [3.3.1]propellane.

REFERENCES

- 1. Previous papers in this series: (a) IV: P. Warner, J. Fayos and J. Clardy, <u>Tetrahedron Lett.</u>, 4473 (1973); (b) III: P. Warner and S. Lu, J. <u>Amer.</u> <u>Chem. Soc.</u>, <u>95</u>, 5099 (1973); (c) II: P. Warner, R. LaRose, C. Lee and J. Clardy, J. <u>Amer. Chem. Soc.</u>, <u>94</u>, 7607 (1972); (d) I: P. Warner and R. LaRose, <u>Tetrahedron Lett.</u>, 214I (1972).
- 2. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the National Science Foundation for support of this research.
- 3. NSFURP participant, summer, 1973.

4. (a)

E. Vogel, W. Wiedemann, H. Roth, J. Eimer and H. Günther, Liebigs Ann. Chem., 759, 1 (1972).

P. Gassman, R. Steppel and E. Armour, <u>Tetrahedron Lett.</u>, 3287 (1973).

(a) R. Pincock and E. Torupka, J. Amer. Chem. Soc., <u>91</u>, 4593 (1969).
(b) W. Scott and R. Pincock, <u>ibid.</u>, <u>95</u>, 2040 (1973).
(c) The strain of II (X = CN) has been measured⁵⁰ by scanning calorimetry, and found to be 28.6 kcal/mole, on the assumption that the adamantane polymer

is strainfree. This assumption is fallacious. In addition to the 6.5kcal/ mole strain in adamantane itself [P. Schleyer, J. Williams and K. Blanchard, ibid., 92, 2377 (1970)], there is an additional 7.0 kcal/mole strain from the buttressing effects of the 2 adamantyl groups attached to any given adamantane unit in the polymer [E. Engler, J. Andose and P. Schleyer, <u>ibid.</u>, 95, 8005 (1973)]. Thus the actual strain of II is <u>ca</u>. 42 kcal/mole.

- 6. We synthesized III via a slight modification of Corey's procedure [E. Corey and E. Block, J. Org. Chem., 34, 1233 (1969)]. In addition to an nmr singlet at $\delta 2.13$ (benzene), III showed $\nu_{c=c} = 1675$ cm⁻¹ in the Raman spectrum.
- 7. Details of our studies of the mechanism of bromine addition to propellanes will be published elsewhere.
- 8. The yields quoted are "before work-up, nmr yields", which appear quantitative; however, the formation of VII from VI is not quantitative.
- 9. J. A. Marshall and H. Faubl, J. Amer. Chem. Soc., 92, 948 (1970).
- 10. (a) Since both VI and VII were quite volatile, relative to V, and the final ratio of VI:VII was 1.7, these were not isolated; hence their identification, although well grounded, must be considered "tentative".
 (b) for comparision, the vinyl proton of

appears at $\delta 5.10$;¹⁰^{c,d} (c) chemical shifts in glacial acetic aicd, using the solvent ¹³C sidebands as internal standards, and taking the chemical shift of the cyclopropyl protons of Ib as $\delta 0.45$; (d) P. Warner, unpublished results.

- 11. This is independent of the question of whether or not the proton first attacks edgewise and then slides to the corner [C. H. DePuy, <u>Fortschr</u>. <u>Chem. Forsch.</u>, 40, 73 (1973)].
- 12. The effect of the 4 axial H_{EXO} 's is probably responsible for the considerable downfield shift seen for H_9 in II (X = H, §1.66) relative to the comparable H's of Ib (§0.45) and [3.2.1]propellane (§0.68).¹¹
- 13. K. B. Wiberg and G. J. Burgmaier, <u>J. Amer. Chem. Soc.</u>, <u>94</u>, 7396 (1972).